Ans:
(a) Given: Base (b) = 7 cm
Height (h) = 4 cm
Area = b X h = 7 X 4
Area = 28 cm2
(b) Given: Base (b) = 5 cm
Height (h) = 3 cm
Area = b X h = 5 X 3
Area = 15 cm2
(c) Given: Base (b) = 2.5 cm
Height (h) = 3.5 cm
Area = b X h = 2.5 X 3.5
Area = 8.75 cm2
(d) Given: Base (b) = 5 cm
Height (h) = 4.8 cm
Area = b X h = 5 X 4.8
Area = 24 cm2
(e) Given: Base (b) = 2 cm
Height (h) = 4.4 cm
Area = b X h = 2 X 4.4
Area = 8.8 cm2
Ans:
(a) Given: Base (b) = 4 cm
Height (h) = 3 cm
Area = 1/2 X b X h = 1/2 X 4 X 3
Area = 6 cm2
(b) Given: Base (b) = 5 cm
Height (h) = 3.2 cm
Area = 1/2 X b X h = 1/2 X 5 X 3.2
Area = 8 cm2
(c) Given: Base (b) = 3 cm
Height (h) = 4 cm
Area = 1/2 X b X h = 1/2 X 3 X 4
Area = 6 cm2
(d) Given: Base (b) = 3 cm
Height (h) = 2 cm
Area = 1/2 X b X h = 1/2 X 3 X 2
Area = 3 cm2
Ans:
(a) Given: Base (b) = 20 cm
Area = 246 cm2
Area = b X h
246 = 20 X h
Height = \( \frac{246}{20} \) = 12.3 cm
(b) Given: height (h) = 15 cm
Area = 154.5 cm2
Area = b X h
154.5 = b X 15
Base = \( \frac{154.5}{15} \) = 10.3 cm
(c) Given: height (h) = 8.4 cm
Area = 48.72 cm2
Area = b X h
48.72 = b X 8.4
Base = \( \frac{48.72}{8.4} \) = 5.8 cm
(d) Given: Base (b) = 15.6 cm
Area = 16.38 cm2
Area = b X h
16.38 = 15.6 X h
Height = \( \frac{16.38}{15.6} \) = 1.05 cm
Thus,
S.No. | Base | Height | Area of the Parallelogram |
---|---|---|---|
a. | 20 cm | 12.3 cm | 246 cm2 |
b. | 10.3 cm | 15 cm | 154.5 cm2 |
c. | 5.8 cm | 8.4 cm | 48.72 cm2 |
d. | 15.6 cm | 1.05 cm | 16.38 cm2 |
Ans:
(a) Given: Base (b) = 15 cm
Area = 87 cm2
Area = 1/2 X b X h
87 = 1/2 X 15 X h
Height = \( \frac{87 \times 2}{15} \) = 11.6 cm
(b) Given: Height (h) = 31.4 mm
Area = 1256 mm2
Area = 1/2 X b X h
1256 = 1/2 X b X 31.4
Base = \( \frac{1256 \times 2}{31.4} \) = 80 mm
(c) Given: Base (b) = 22 cm
Area = 170.5 cm2
Area = 1/2 X b X h
170.5 = 1/2 X 22 X h
Height = \( \frac{170.5 \times 2}{22} \) = 15.5 cm
Thus,
S.No. | Base | Height | Area of Triangle |
---|---|---|---|
a. | 15 cm | 11.6 cm | 87 cm2 |
b. | 80 mm | 31.4 mm | 1256 mm2 |
c. | 22 cm | 15.5 cm | 170.5 cm2 |
Ans:
(a) Given: Base SR (b) = 12 cm
Height QM (h) = 7.6 cm
Area = b X h = 12 X 7.6
Area of parallelogram PQRS = 91.2cm2
(b) Given: Area = 91.2 cm2
Base PS (b) = 8 cm
Area = b X h
91.2 = 8 X h
h = \( \frac{91.2}{8} \)
QN = 11.4cm
Ans:
Given: Area = 1470 cm2
Base AB = 35 cm
Base AD = 49 cm
Area = base X height
Area = AD X BM
1470 = 49 X BM
BM = \( \frac{1470}{49} \)
BM = 30 cm
Area = AB X DL
1470 = 35 X DL
DL = \( \frac{1470}{35} \)
DL = 42 cm
Ans:
Given: ∆ABC is right angled ∆
AB = 5 cm, BC = 13 cm, AC = 12 cm
So, AC is the height for base AB.
Thus, Area of ∆ABC = 1/2 X base (AB) X height (AC)
Area of ∆ABC = 1/2 X 5 X 12
Area of ∆ABC = 30 cm2
Area of ∆ABC = 1/2 X base (BC) X height (AD)
30 = 1/2 X 13 X AD
AD = \( \frac{30 \times 2}{13} \)
AD = \( \frac{60}{13} \) cm
Ans:
Given: ∆ABC is isosceles ∆
AB = AC = 7.5 cm,
BC = 9 cm, AD = 6 cm
Thus, Area of ∆ABC = 1/2 X base (BC) X height (AD)
Area of ∆ABC = 1/2 X 9 X 6
Area of ∆ABC = 27 cm2
Area of ∆ABC = 1/2 X base (AB) X height (CE)
27 = 1/2 X 7.5 X CE
CE = \( \frac{27 \times 2}{7.5} \)
CE = 7.2 cm
Ans:
(a) Radius (r) = 14 cm
Circumference = 2πr
= 2 X \( \frac{22}{7} \) X 14
Circumference = 88 cm
(b) Radius (r) = 28 mm
Circumference = 2πr
= 2 X \( \frac{22}{7} \) X 28
Circumference = 176 mm
(c) Radius (r) = 21 cm
Circumference = 2πr
= 2 X \( \frac{22}{7} \) X 21
Circumference =132 cm
Ans:
(a) Radius (r) = 14 mm
Area = πr2
= \( \frac{22}{7} \) X 14 X 14
Area = 616 mm2
(b) Diameter (d) = 49 cm
Radius = d / 2 = \( \frac{49}{2} \) cm
Area = πr2
= \( \frac{22}{7} \) X \( \frac{49}{2} \) X \( \frac{49}{2} \)
Area = 1886.5 cm2
(c) Radius (r) = 5 cm
Area = πr2
= \( \frac{22}{7} \) X 5 X 5
Area = \( \frac{550}{7} \) cm2
Ans:
Given: Circumference = 154 m
Circumference = 2πr
154 = 2 X \( \frac{22}{7} \) X r
r = \( \frac{154 \times 7}{2 \times 22} \)
Radius = 24.5 m
Area = πr2
= \( \frac{22}{7} \) X 24.5 X 24.5
Area = 1886.5 m2
Ans:
Given: Diameter (d) = 21 m
Circumference = πd
= \( \frac{22}{7} \) X 21
= 66 m
Length of rope = 2 X 66 = 132 m
Cost of the rope = 132 X 4 = ₹528
Ans:
Given: Radius of sheet (r1) = 4 cm
Radius of circle (r2) = 3 cm
Area = πr2
A1 = 3.14 X 42 = 50.24 cm2
A2 = 3.14 X 32 = 28.26 cm2
Area of remaining sheet = A1 - A2
= 50.24 - 28.26
Area of remaining sheet = 21.98 cm2
Ans:
Given: Diameter (d) = 1.5 m
Circumference = πd
= 3.14 X 1.5
= 4.71 m
Length of rope = 4.71m
Cost of the rope = 4.71 X 15 = ₹70.65
Ans:
Given: Diameter (d) = 10 cm
Circumference of semicircle = πd / 2
= 3.14 x 10 / 2 = 15.7 cm
Perimeter = circumference of semicircle + diameter
Perimeter = 15.7 + 10 = 25.7 cm
Ans:
Given: Diameter (d) = 1.6 m
Radius = d / 2 = \( \frac{1.6}{2} \) = 0.8 m
Area = πr2
= \( \frac{22}{7} \) X 0.82
Area of table-top = 2.01 m2
Cost of polishing = 2.01 X 15 = ₹30.15
Ans:
Given: Perimeter = Circumference = 44 cm
Circumference = 2πr
44 = 2 X \( \frac{22}{7} \) X r
r = \( \frac{44 \times 7}{2 \times 22} \)
Radius of the circle = 7 cm
Area = πr2
= \( \frac{22}{7} \) X 7 X 7
Area of the circle = 154 cm2
Perimeter of square = 44 cm = 4 X length
So, length of each side of square = 44 / 4 = 11cm
Area of square = length2 = 112 = 121 cm2
Thus, the circle encloses more area than the square.
Ans:
Given: Radius = 14 cm
Radius of 2 circles = 3.5 cm
Length of rectangle = 3 cm
Breadth of rectangle = 1 cm
Area of circle = πr2
= \( \frac{22}{7} \) X 14 X 14
Area of the circular sheet = 616 cm2
Area of 2 circles = 2 X \( \frac{22}{7} \) X 3.5 X 3.5
Area of 2 circles = 77 cm2
Area of rectangle = l X b = 3 X 1 = 3 cm2
Area of remaining sheet = Area of circular sheet - (area of rectangle + area of 2 circles)
= 616 - (77 + 3) = 616 -80
Area of remaining sheet = 536 cm2
Ans:
Given: Side of square sheet = 6 cm
Radius of circle = 2 cm
Area of square sheet = (side)2 = 62
Area of square sheet = 36 cm2
Area of circle = πr2
= 3.14 X 2 X 2
Area of circle = 12.56 cm2
Area of left over sheet = Area of square sheet - Area of circle
= 36 - 12.56
Area of left over sheet = 23.44 cm2
Ans:
Given: Circumference = 31.4 cm
Circumference = 2πr
31.4 = 2 X 3.14 X r
r = \( \frac{31.4}{2 \times 3.14} \)
Radius of the circle = 5 cm
Area = πr2
= 3.14 X 5 X 5
Area of the circle = 78.5 cm2
Ans:
Given: Diameter of the flower bed = 66 m
Radius of the flower bed (r) = d/2 = 66/2
r = 33 m
Area of flower bed = πr2 = 3.14 X 332
Area of flower bed = 3419.46 m2
Radius of flower bed & path = 33 + 4 = 37 m
Area = πr2 = 3.14 X 372
Area of flower bed & path = 4298.66 m2
Area of the path = Area of the flower bed & path – Area of the flower bed
= 4298.66 – 3419.46
Area of the path = 879.20 m2
Ans:
Given: Area of the circular flower garden = 314 m2
Radius of sprinkler = 12 m
Area of the circular flower garden = πr2
314 = 3.14 X r2
r2 = \( \frac{314}{3.14} \) = 100
Radius of the circular flower garden = 10 m
As the sprinkler can cover an area of a radius of 12 m.
Hence, the sprinkler will water the whole garden.
Ans:
Given: Radius of outer circle = 19 cm
Radius of inner circle = Radius of outer circle – 10
Radius of inner circle = 19 – 10 = 9 cm
Circumference = 2πr
= 2 X 3.14 X 9
Circumference of inner circle = 56.52 m
Circumference of the outer circle = 2 X 3.14 X 19
Circumference of the outer circle = 119.32 m
Ans:
Given: Radius of the wheel = 28 cm
Distance covered = 352 m = 35200 cm
Circumference = 2πr
= 2 X \( \frac{22}{7} \) X 28
Circumference of the wheel = 176 cm
Number of rotations = Total distance \( \div \) Circumference of the wheel
= 35200 \( \div \) 176
Number of rotations = 200
thus, the wheel should rotate 200 times.
Ans:
Given: Length of the minute hand = 15 cm
Distance of the tip of minute hand in 1 hour = Circumference of minute hand
Distance = 2πr
= 2 × 3.14 × 15 = 94.2 cm
Thus, the tip of the minute hand moves 94.2 cm in 1 hour.