Section outline

    • Solutions to Ex. 2.1
      Q1. Which of the drawings (a) to (d) show:

      Ans:

      (i) 2 x 1/5: (d)

      (ii) 2 x 1/2: (b)

      (iii) 3 x 2/3: (a)

      (iv) 3 x 1/4: (c)


      Q2. Some pictures (a) to (c) are given below. Tell which of them show:

      Ans:

      (i) 3 x 1/5 = 3/5 : (c)

      (ii) 2 x 1/3 = 2/3 : (a)

      (iii) 3 x 3/4 = \(2\frac{1}{4}\) : (b)


      Q3. Multiply and reduce to lowest form and convert into a mixed fraction:

      Ans:

      (i) \( 7\times \frac{3}{5} = \frac{21}{5} = 4\frac{1}{5}\) 

      (ii) \( 4\times \frac{1}{3} = \frac{4}{3} = 1\frac{1}{3}\)

      (iii) \( 2\times \frac{6}{7} = \frac{12}{7} = 1\frac{5}{7}\)

      (iv) \( 5\times \frac{2}{9} = \frac{10}{9} = 1\frac{1}{9}\)

      (v) \( \frac{2}{3}\times 4 = \frac{8}{3} = 2\frac{2}{3}\)

      (vi) \( \frac{5}{2}\times 6\) =5 x 3 = 15

      (vii) \( 11\times \frac{4}{7} = \frac{44}{7} = 6\frac{2}{7}\)

      (viii) \( 20\times \frac{4}{5}\) =4 x 4 =16

      (ix) \( 13\times \frac{1}{3} = \frac{13}{3} = 4\frac{1}{3}\)

      (x) \( 15\times \frac{3}{5}\) = 3 x 3 = 9


      Q4. Shade:

      Ans: 


      Q5. Find:

      Ans:

      (a) (i) \(\frac{1}{2}\) of 24 = \(\frac{1}{2}\) x 24 = 12

           (ii) \(\frac{1}{2}\) of 46 = \(\frac{1}{2}\) x 46 = 23

      (b) (i) \(\frac{2}{3}\) of 18 =  \(\frac{2}{3}\) x 18 = 12

            (ii) \(\frac{2}{3}\) of 27 =  \(\frac{2}{3}\) x 27 = 18

      (c) (i) \(\frac{3}{4}\) of 16 = \(\frac{3}{4}\) x 16 = 12

            (ii) \(\frac{3}{4}\) of 36 = \(\frac{3}{4}\) x 36 = 27

      (d) (i) \(\frac{4}{5}\) of 20 = \(\frac{4}{5}\) x 20 = 16

            (ii) \(\frac{4}{5}\) of 35 = \(\frac{4}{5}\) x 35 = 28


      Q6. Multiply and express as a mixed fraction:

      Ans:

      (a) 3 x \(5\frac{1}{5}\)

            = 3 x \(\frac{26}{5}\)  

            = \(\frac{78}{5}\) = \(15\frac{3}{5}\)

      (b) 5 x \(6\frac{3}{4}\)

            = 5 x \(\frac{27}{4}\)  

            = \(\frac{135}{4}\) = \(33\frac{3}{4}\)

      (c) 7 x \(2\frac{1}{4}\)

            = 7 x \(\frac{9}{4}\)  

            = \(\frac{63}{4}\) = \(15\frac{3}{4}\)

      (d) 4 x \(6\frac{1}{3}\)

            = 4 x \(\frac{19}{3}\)  

            = \(\frac{76}{3}\) = \(25\frac{1}{3}\)

      (e) \(3\frac{1}{4}\) x 6

            = \(\frac{13}{4}\) x 6 

            = \(\frac{78}{4}\) = \(19\frac{1}{2}\)

      (f) \(3\frac{2}{5}\) x 8

            = \(\frac{17}{5}\) x 8

            = \(\frac{136}{5}\) = \(27\frac{1}{2}\)


      Q7. Find:

      Ans:

      (a) (i) \(\frac{1}{2}\) of \(2\frac{3}{4}\)

               = \(\frac{1}{2}\) x \(\frac{11}{4}\)

               = \(\frac{11}{8}\) = \(1\frac{3}{8}\)

          (ii) \(\frac{1}{2}\) of \(4\frac{2}{9}\)

               = \(\frac{1}{2}\) x \(\frac{38}{9}\)

               = \(\frac{38}{18}\) = \(2\frac{1}{9}\)

      (b) (i) \(\frac{5}{8}\) of \(3\frac{5}{6}\)

               = \(\frac{5}{8}\)x \(\frac{23}{6}\)

               = \(\frac{115}{48}\) = \(2\frac{19}{48}\)

          (ii) \(\frac{5}{8}\) of \(9\frac{2}{3}\)

               = \(\frac{5}{8}\) x \(\frac{29}{3}\)

               = \(\frac{145}{24}\) = \(6\frac{1}{24}\)


      Q8. Vidya and Pratap went for a picnic. Their mother gave them a water bottle that contained 5 litres of water. Vidya consumed 2/5 of the water. Pratap consumed the remaining water.
              (i) How much water did Vidya drink?
              (ii) What fraction of the total quantity of water did Pratap drink?

      Ans:

      Given: Total water= 5 litres

      Water consumed by Vidya = 5 x \(\frac{2}{5}\)

                                                = 2 litres

      Water consumed by Pratap = 5 - 2 = 3 litres

      Fraction of water consumed by Pratap = Water consumed by Pratap / Total water

             = \(\frac{3}{5}\)


       

    • Solutions to Ex. 2.2:
      Q1. Find:

      Ans:

      (i) (a) \(\frac{1}{4}\) of \(\frac{1}{4}\)

       = \(\frac{1}{4}\) x \(\frac{1}{4}\)

       = \(\frac{1}{16}\)

          (b) \(\frac{1}{4}\) of \(\frac{3}{5}\)

      = \(\frac{1}{4}\) x \(\frac{3}{5}\)

      = \(\frac{3}{20}\)

          (c) \(\frac{1}{4}\) of \(\frac{4}{3}\) 

      = \(\frac{1}{4}\) x \(\frac{4}{3}\)

      = \(\frac{1}{3}\)

      (ii) (a) \(\frac{1}{7}\) of \(\frac{2}{9}\)

      = \(\frac{1}{7}\) x \(\frac{2}{9}\)

      = \(\frac{2}{63}\)

           (b) \(\frac{1}{7}\) of \(\frac{6}{5}\)

      = \(\frac{1}{7}\) x \(\frac{6}{5}\)

      = \(\frac{6}{35}\)

           (c) \(\frac{1}{7}\) of \(\frac{3}{10}\)

      = \(\frac{1}{7}\) x \(\frac{3}{10}\)

      = \(\frac{3}{70}\)


      Q2. Multiply and reduce to lowest form (if possible) :

      Ans:

      (i) \(\frac{2}{3}\) x \(2\frac{2}{3}\)

          = \(\frac{2}{3}\) x \(\frac{8}{3}\)

          = \(\frac{16}{9}\) = \(1\frac{7}{9}\)

      (ii) \(\frac{2}{7}\) x \(\frac{7}{9}\)

          = \(\frac{2}{9}\)

      (cancelling 7 from the numerator & denominator)

      (iii) \(\frac{3}{8}\) \(\frac{6}{4}\)

          = \(\frac{3}{8}\) \(\frac{3}{2}\)

          = \(\frac{9}{16}\)

      (iv) \(\frac{9}{5}\) \(\frac{3}{5}\) = \(\frac{27}{25}\)

          = \(1\frac{2}{25}\)

      (v) \(\frac{1}{3}\) \(\frac{15}{8}\)

           = \(\frac{5}{8}\)

      (As 15 in numerator is ÷ 3 in denominator to give 5)​

      (vi) \(\frac{11}{2}\) \(\frac{3}{10}\)

            = \(\frac{33}{20}\)

            = \(1\frac{13}{20}\)

      (vii) \(\frac{4}{5}\) x \(\frac{12}{7}\)

            = \(\frac{48}{35}\)

            = \(1\frac{13}{35}\)

      Steps: 

      1. Check the numerator & denominator for numbers that can be reduced.
      2. When nothing can be simplified, multiply the numerator with numerator & denominator with denominator.
      3. Convert the final answer to mixed fraction.

      Q3. Multiply the following fractions:

      Ans:

      (i) \(\frac{2}{5}\times \ 5\frac{1}{4}\)

      \(\frac{2}{5}\) x \(5\frac{1}{4}\)

           = \(\frac{2}{5}\) x \(\frac{21}{4}\) 

           = \(\frac{21}{10}\) = \(2\frac{1}{10}\)

      (ii) \(6\frac{2}{5}\) x \(\frac{7}{9}\)

            = \(\frac{32}{5}\) x \(\frac{7}{9}\)

            = \(\frac{224}{45}\) = \(4\frac{44}{45}\)

      (iii) \(\frac{3}{2}\) x \(5\frac{1}{3}\)

            = \(\frac{3}{2}\) x \(\frac{16}{3}\) 

            = 8

      (iv) \(\frac{5}{6}\) x \(2\frac{3}{7}\)

            = \(\frac{5}{6}\) x \(\frac{17}{7}\)

            = \(\frac{85}{42}\) = \(2\frac{1}{42}\)

      (v) \(3\frac{2}{5} \times \frac{4}{7}\)

             =\(\frac{17}{2} \times \frac{4}{7}\)

             = \(\frac{68}{35}\) = \(1\frac{33}{35}\)

      (vi) \(2\frac{3}{5}\) x 3

             =\(\frac{13}{5}\) x 3

             = \(\frac{39}{5}\) = \(7\frac{4}{5}\)

      (vii) \(3\frac{4}{7} \times \frac{3}{5}\)

             =\(\frac{25}{7} \times \frac{3}{5}\)

             = \(\frac{75}{35}\) = \(2\frac{1}{7}\)


      Q4.Which is greater:

      Ans:

      (i) \(\frac{2}{7}\) of \(\frac{3}{4}\)

           =  \(\frac{2}{7}\) x \(\frac{3}{4}\)

           = \(\frac{3}{14}\)

         \(\frac{3}{5}\) of \(\frac{5}{8}\)

          = \(\frac{3}{5}\) x \(\frac{5}{8}\)

         = \(\frac{3}{8}\)

      To compare \(\frac{3}{14}\) & \(\frac{3}{8}\)

      LCM 0f 14 & 8 is 56

      Hence,

      \(\frac{3}{14}\) = \(\frac{12}{56}\) &

      \(\frac{3}{8}\) = \(\frac{21}{56}\)

      Comparing numerators

      12 < 21

      \(\frac{3}{5}\) of \(\frac{5}{8}\) is greater.

      (ii) \(\frac{1}{2}\) of \(\frac{6}{7}\)

           = \(\frac{1}{2}\) x \(\frac{6}{7}\)

           = \(\frac{6}{14}\) = \(\frac{3}{7}\)

          \(\frac{2}{3}\) of \(\frac{3}{7}\)

          = \(\frac{2}{3}\) x \(\frac{3}{7}\)

          = \(\frac{2}{7}\)

      As denominators are same, comparing numerators

      3 > 2

      \(\frac{1}{2}\) of \(\frac{6}{7}\) is greater.


      Q5. Saili plants 4 saplings, in a row, in her garden. The distance between two adjacent saplings is 3/4 m. Find the distance between the first and the last sapling.

      Ans:

      Given: Number of saplings in a row = 4

                  Distance between each sapling = \(\frac{3}{4}\)m

      Distance between first & last sapling

      = 3 x \(\frac{3}{4}\)

      = \(\frac{9}{4}\) = \(2\frac{1}{4}\)m


      Q6. Lipika reads a book for \(1\frac{3}{4}\) hours everyday. She reads the entire book in 6 days. How many hours in all were required by her to read the book?

      Ans:

      Given: Time per day = \(1\frac{3}{4}\) = \(\frac{7}{4}\) hrs.

         Number of days = 6

      Total hours = 6 x \(\frac{7}{4}\)

      = \(\frac{21}{2}\)

      = \(10\frac{1}{2}\) hours


      Q7. A car runs 16 km using 1 litre of petrol. How much distance will it cover using \(2\frac{3}{4}\) litres of petrol.

      Ans:

      Given: Distance in 1 litre petrol= 16km

      Distance covered = \(2\frac{3}{4}\) x 16

       = \(\frac{11}{4}\) x 16

       = 44 km


      Q8. Ans:

      (a)  (i) 5/10

            (ii) 1/2

      (b) (i) 8/15

           (ii) 8/15


       

    • Solutions to Ex. 2.3
      Q1. Find:

      Ans:

      (i) 12 ÷ \(\frac{3}{4}\)

          = 12 x \(\frac{4}{3}\) = 16

      (ii) 14 ÷ \(\frac{5}{6}\)

           = 14 x \(\frac{6}{5}\)

           = \(\frac{84}{5}\) = \(16\frac{4}{5}\)

      (iii) 8 ÷ \(\frac{7}{3}\)

           = 8 x \(\frac{3}{7}\)

           = \(\frac{24}{7}\) = \(3\frac{3}{7}\)

      (iv) 4 ÷ \(\frac{8}{3}\)

           = 4 x \(\frac{3}{8}\)

           =  \(\frac{3}{2}\) 

      (v) 3 ÷ \(2\frac{1}{3}\) = 3 ÷ \(\frac{7}{3}\)

           = 3 x \(\frac{3}{7}\)

           = \(\frac{9}{7}\) = \(1\frac{2}{7}\)

      (vi) 5 ÷ \(3\frac{4}{7}\) = 5 ÷ \(\frac{25}{7}\)

           = 5 x \(\frac{7}{25}\) = \(\frac{7}{5}\)


      Q2. Find the reciprocal of each of the following fractions. Classify the reciprocals as proper fractions, improper fractions and whole numbers.

      Ans: Reciprocals are:

      (i) \(\frac{7}{3}\), Improper fraction.

      (ii) \(\frac{8}{5}\), Improper fraction.

      (iii) \(\frac{7}{9}\), Proper fraction.

      (iv) \(\frac{5}{6}\), Proper fraction.

      (v) \(\frac{7}{12}\), Proper fraction.

      (vi) 8, Whole number.

      (vii) 11, Whole number.


      Q3. Find:

      Ans:

      (i) \(\frac{7}{3}\) ÷ 2

           = \(\frac{7}{3}\) x \(\frac{1}{2}\)

           = \(\frac{7}{6}\) = \(1\frac{1}{6}\)

      (ii) \(\frac{4}{9}\) ÷ 5

           = \(\frac{4}{9}\) x \(\frac{1}{5}\)

           = \(\frac{4}{45}\)  

      (iii) \(\frac{6}{13}\) ÷7

            = \(\frac{6}{13}\) x \(\frac{1}{7}\)

            = \(\frac{6}{91}\)

      (iv) \(4\frac{1}{3}\) ÷ 3

            = \(\frac{13}{3}\) x \(\frac{1}{3}\)

            = \(\frac{13}{9}\) = \(1\frac{4}{9}\)

      (v) \(3\frac{1}{2}\) ÷ 4

            = \(\frac{7}{2}\) x \(\frac{1}{4}\)

            =\(\frac{7}{8}\)

      (vi) \(4\frac{3}{7}\) ÷ 7

            = \(\frac{31}{7}\) x \(\frac{1}{7}\)

            = \(\frac{31}{49}\)


      Q4. Find:

      Ans:

      (i) \(\frac{2}{5}\) ÷ \(\frac{1}{2}\)

           = \(\frac{2}{5}\) x 2 =  \(\frac{4}{5}\)

      (ii) \(\frac{4}{9}\) ÷\(\frac{2}{3}\)

           =  \(\frac{4}{9}\) x \(\frac{3}{2}\) = \(\frac{2}{3}\)

      (iii) \(\frac{3}{7}\) ÷ \(\frac{8}{7}\)

            =  \(\frac{3}{7}\) x \(\frac{7}{8}\) =  \(\frac{3}{8}\) 

      (iv) \(2\frac{1}{3}\) ÷ \(\frac{3}{5}\)

            = \(\frac{7}{3}\) x \(\frac{5}{3}\)

            = \(\frac{35}{9}\) = \(3\frac{8}{9}\)

      (v) \(3\frac{1}{2}\) ÷ \(\frac{8}{3}\)

           = \(\frac{7}{2}\) x \(\frac{3}{8}\)

           = \(\frac{21}{16}\) =\(1\frac{5}{16}\)

      (vi) \(\frac{2}{5}\) ÷ \(1\frac{1}{2}\)

           = \(\frac{2}{5}\)÷ \(\frac{3}{2}\) 

           = \(\frac{2}{5}\) x \(\frac{2}{3}\) = \(\frac{4}{15}\) 

      (vii) \(3\frac{1}{5}\) ÷ \(1\frac{2}{3}\)

           = \(\frac{16}{5}\)÷ \(\frac{5}{3}\) 

           = \(\frac{16}{5}\) x \(\frac{3}{5}\)

           = \(\frac{48}{25}\) = \(1\frac{23}{25}\)

      (viii) \(2\frac{1}{5}\) ÷ \(1\frac{1}{5}\)

           = \(\frac{11}{5}\)÷ \(\frac{6}{5}\) 

           = \(\frac{11}{5}\) x \(\frac{5}{6}\)

           = \(\frac{11}{6}\) = \(1\frac{5}{6}\)


       

    • Solutions to Ex. 2.4
      Q1. Find:

      Ans:

      (i) 0.2 × 6 = 1.2

      (ii) 8 × 4.6 = 36.8

      (iii) 2.71 × 5 = 13.55

      (iv) 20.1 × 4 = 80.4

      (v) 0.05 × 7 = 0.35

      (vi) 211.02 × 4 = 844.08

      (vii) 2 × 0.86 = 1.72


      Q2. Find the area of rectangle whose length is 5.7cm and breadth is 3 cm.

      Ans:

      Given: Length of rectangle = 5.7cm

                  Breadth of rectangle = 3cm

      Area of rectangle = l x b

                                   = 5.7 x 3 = 17.1cm2


      Q3. Find:

      Ans:

      (i) 1.3 × 10 = 13

      (ii) 36.8 × 10 = 368

      (iii) 153.7 × 10 = 1537

      (iv) 168.07 × 10 = 1680. 7

      (v) 31.1 × 100 = 3110

      (vi) 156.1 × 100 = 15610

      (vii) 3.62 × 100 = 362

      (viii) 43.07 × 100 = 4307

      (ix) 0.5 × 10 = 5

      (x) 0.08 × 10 = 0.8

      (xi) 0.9 × 100 = 90

      (xii) 0.03 × 1000 = 30


      Q4. A two-wheeler covers a distance of 55.3 km in one litre of petrol. How much distance will it cover in 10 litres of petrol?

      Ans:

      Given: Distance in 1 litre petrol = 55.3km

                  Distance covered in 10 litres of petrol = 55.3 x 10

                                                                      = 553km


      Q5. Find:

      Ans:

      (i) 2.5 × 0.3 = 0.75

      (ii) 0.1 × 51.7 = 5.17

      (iii) 0.2 × 316.8 = 63.36

      (iv) 1.3 × 3.1 = 4.03

      (v) 0.5 × 0.05 = 0.025

      (vi) 11.2 × 0.15 = 1.68

      (vii) 1.07 × 0.02 = 0.0214

      (viii) 10.05 × 1.05 = 10.5525

      (ix) 101.01 × 0.01 = 1.0101

      (x) 100.01 × 1.1 = 110.011


       

    • Solutions to Ex. 2.5
      Q1. Find:

      Ans:

      (i) 0.4 ÷ 2 = 0.2

      (ii) 0.35 ÷ 5 = 0.07

      (iii) 2.48 ÷ 4 = 0.62

      (iv) 65.4 ÷ 6 = 10.9

      (v) 651.2 ÷ 4 = 162.8

      (vi) 14.49 ÷ 7 = 2.07

      (vii) 3.96 ÷ 4 = 0.99

      (viii) 0.80 ÷ 5 = 0.16


      Q2. Find:

      Ans:

      (i) 4.8 ÷ 10 = 0.48

      (ii) 52.5 ÷ 10 = 5.25

      (iii) 0.7 ÷ 10 = 0.07

      (iv) 33.1 ÷ 10 = 3.31

      (v) 272.23 ÷ 10 = 27.223

      (vi) 0.56 ÷ 10 = 0.056

      (vii) 3.97 ÷10 = 0.397


      Q3. Find:

      Ans:

      (i) 2.7 ÷ 100 = 0.027

      (ii) 0.3 ÷ 100 = 0.003

      (iii) 0.78 ÷ 100 = 0.0078

      (iv) 432.6 ÷ 100 = 4.326

      (v) 23.6 ÷100 = 0.236

      (vi) 98.53 ÷ 100 = 0.9853


      Q4. Find:

      Ans:

      (i) 7.9 ÷ 1000 = 0.0079

      (ii) 26.3 ÷ 1000 = 0.0263

      (iii) 38.53 ÷ 1000 = 0.03853

      (iv) 28.9 ÷ 1000 = 0.1289

      (v) 0.5 ÷ 1000 = 0.0005


      Q5. Find:

      Ans:

      (i) 7 ÷ 3.5 = 2

      (ii) 36 ÷ 0.2 = 180

      (iii) 3.25 ÷ 0.5 = 6.5

      (iv) 30.94 ÷ 0.7 = 44.2

      (v) 0.5 ÷ 0.25 = 2

      (vi) 7.75 ÷ 0.25 = 31

      (vii) 76.5 ÷ 0.15 = 510

      (viii) 37.8 ÷ 1.4 = 27

      (ix) 2.73 ÷ 1.3 = 2.1


      Q6. Find: A vehicle covers a distance of 43.2 km in 2.4 litres of petrol. How much distance will it cover in one litre of petrol?

      Ans:

      Given: Distance covered = 43.2 km

                  Amount of petrol = 2.4 litres

      Distance covered in one litre of petrol = 43.2 ÷ 2.4

                                                                   = 18 km